

ISO-HT® Polyisocyanurate Insulation

2.5 lb/ft³ (40 kg/m³) density for Higher Temperature Applications

ISO-HT is Kingspan Insulation, LLC's 2.5 lb/ft³ polyisocyanurate rigid, closed cell, foam insulation for higher temperature applications up to 350°F (177°C), with intermittent exposure up to 375°F (190°C). ISO-HT is suitable for constant temperature or heat cycling environments. ISO-HT is certified by independent laboratory to meet demanding Class 1 flame spread and smoke development requirements per ASTM E84. Kingspan offers ISO-HT as bunstock or as sheets and blocks, with tolerances up to 1/32 inch on surfaces. Our extensive network of fabricators can provide special shapes for pipe, fittings, vessels, or other mechanical applications.

Polyisocyanurate exhibits the highest R-factor (insulating value) to thickness ratio of commercially available insulation, and ISO-HT provides higher R-factors and reduced thermal aging. Ideal for applications over a wide range of temperatures, from cryogenic liquids to low-temperature steam, ISO-HT offers superior performance per unit cost when compared to polystyrene, polyurethane, phenolic, fiberglass, aerogel, and cellular glass alternatives. When temperatures are limited to less than 300°F, our ISO-C1 product line is also available in 2, 2.5, 3, 4, and 6 lb/ft³ densities, which each provide successively improved strength and other attributes for physically demanding applications.

Kingspan's ISO product line is produced as a continuous foam bunstock. For bun and sheet size options contact the info@dyplast.com.

APPLICATIONS

ISO-HT is designed for use where temperatures range from -297°F to +350F°, making it ideal for low-temperature steam applications and refinery liquids, pharmaceutical, and hot water systems.

WATER ABSORPTION

Water absorption by insulation can degrade thermal insulating performance. ISO-HT's excellent resistance to water absorption (0.27%) helps ensure long-term thermal performance remains superior to polystyrenes, phenolic foams, fiberglass, and cellular glass - - which for example has water absorption of 0.2% (per manufacturer data), as well as considerably lower insulating value.

NOTE TO ENGINEERS AND CONTRACTORS

Visit www.dyplast.com for readily accessible information on specifications as well as Safety Data Sheets (SDS) and more. Relevant documents are retrievable within two clicks from our home page.

Kingspan Insulation, LLC (formerly Dyplast Products) is the preeminent manufacturer of polyisocyanurate and expanded polystyrene rigid foam products. With world-class production facilities in Miami, Florida, Kingspan offers its customers unsurpassed technology, responsiveness, wide-ranging product configurations, and state-of-the-art quality control. Our customer-focused staff, combined with our sound financial footing, ensure we deliver incomparable value to our customers far into the future.

SURFACE BURNING CHARACTERISTICS

The International Mechanical Code defines Class 1 insulation as meeting the 25/450 flame spread/smoke development rating. ISO-HT performs well within this range with a 25/400 (at 4") rating. When comparing surface burning characteristics of alternative products, care must be taken to consider the installed insulation system as a whole, including sprinkler systems. For example, a well-designed ISO-HT insulation system can improve overall flame/smoke performance of the polyiso insulation. On the other hand, an alternative insulation's flame/smoke ratings may be compromised by the sealants or jacketing often recommended by suppliers. There is also the matter of insulation system integrity during a fire. ISO-HT may be charred by flame, but maintains its integrity and continues to protect the insulated system.

LONG TERM R-VALUE

High thermal insulation efficiency is achieved by infusing cells with gases having low thermal conductivity. All such rigid foam insulation (including polyurethane, extruded polystyrene, and polyisocyanurate) thus lose a small amount of their insulating value over time as air displaces insulating gases. ISO-HT's smaller, stronger cell structure and our proprietary cell-gas formulation work together to impede gas transfer across cell boundaries, thus reducing loss of thermal efficiency. Thicker insulation, vapor barriers, and metal constraints also limit gas diffusion.

INSTALLATION RECOMMENDATIONS

ISO-HT is designed for constant temperature exposure up to 350°F continuous. ISO-HT should be installed on pipe at room temperature. Installation onto high temperature or live steam lines is discouraged, since this will cause dimensional stability problems. ISO-HT should be used with an appropriate ASJ or Metal Jacket secured with banding. Please see Kingspan's Installation Guidelines (at dyplast.com) for more information.

(800) 433-5551 info@dyplast.com www.dyplast.com 12501 N.W. 38th Ave Miami FL 33054

ISO-HT[®] POLYISO INSULATION: (2.5 lb/ft³ density)

ISO-HT® Foam Comparison vs. ASTM C591

		1 .	i i	_
General Physical Properties	Test Method	Units	ASTM C591	ISO-HT®
Service Temperature		°F	300	350
		°F	-297	-297
12.1 Nominal Density	ASTM D1622	lb/ft ³	2.5	2.5
12.2 Compressive Resistance (Strength)	ASTM D1621	psi		
Parallel			35	43.1
Perpendicular (Length)				33.3
Perpendicular (Width)				30.6
12.3 Apparent Thermal Conductivity (aged 6				
months @ 73 ± 4°F)	ASTM C177	Btu.in/ h.ft ² °F		
Mean temperature of measurement: -265°F			Not specified	0.084
-200°F			0.13	0.116
-150°F			0.15	0.137
-100°F			0.17	0.158
-50°F			0.19	0.178
0°F			0.20	0.188
50°F			0.19	0.183
75°F			0.20	0.191
150°F			0.24	0.229
200°F			0.27	0.257
		2		
75°F	ASTM C518	Btu.in/ h.ft ² °F	0.20	0.186
12.4 Hot-Surface Performance at 300°F	ASTM C411	Deflection (in.)	< 0.25"	Pass
			At 350°F	0.06
12.5 Water Absorption	ASTM C272	% by volume	1.0	0.6
12.6 Water Vapor Permeability				
(Transmission)	ASTM E96	Perm-in.	3.5	1.7
12.7 Dimensional Stability, D2126	ASTM D2126	% Linear Change		
-40°F, 14 days			1% max	-0.1
158°F, 97% RH, 14 days			4% max	1.2
212°F, 14 days			2% max	0.5
12.8 Closed Cell Content	ASTM D2856	% minimum	90	95
Meets ASTM C591 (Type 2)				Yes

- 1. Physical properties are measured at 70-75F, unless otherwise indicated, and all test values are from independent certified testing laboratories.
- 2. These are nominal values obtained from representative product samples, and are subject to normal manufacturing variances.
- 3. Average value through the foam cross section.
- 4. Frequent and severe thermal cycling can produce dimensional changes significantly greater than those listed here. Special design considerations must be made in systems subject to severe cycling.
- 5. This numerical flame spread data is not intended to reflect hazards presented by this or any other material under actual fire conditions.
- 6. FITNESS FOR USE MUST BE DETERMINED BY BUYER AND ENGINEER; KINGSPAN INSULATION, LLC DOES NOT WARRANT FITNESS FOR USE.
- 7. CAUTION: Severe degradation of the foam can result if water gets into the insulation system on a high temperature pipe. These include accelerated degradation and extensive charring, and loss of insulation performance. Thus it is critical that the jacketing and joint sealers are designed and installed correctly to prevent water ingress.
- 8. Intermittent exposures up to 375F (190C) are allowable.

(800) 433-5551 info@dyplast.com www.dyplast.com 12501 N.W. 38th Ave. Miami, FL 33054

ISO-HTx POLYISO INSULATION: (2.5 lb/ft³ density)

The following properties are NOT Specified for ASTM C591 but are often reported

General Physical Properties	Test Method	Units	ISO-HT®	
Surface Burning Characteristics (if				
required)	ASTM E84			
Flame Spread (@4" thickness)			≤25	
Smoke Density (@4" thickness)			≤400	
Leachable Chloride	ASTM C871	ppm	55	
Shear Strength	ASTM C273	psi		
Average of 3 directions			28	
Shear Modulus	ASTM C273	psi	289	
Tensile Strength	ASTM D1623	psi		
Parallel			51	
Perpendicular			39	
Tensile Modulus	ASTM D1623	psi		
Parallel			2044	
Perpendicular			1481	
Flexural Strength	ASTM C203	psi		
Parallel			65	
Perpendicular			71	
Flexural Modulus	ASTM C203	psi		
Parallel			1042	
Perpendicular			1172	
Coefficient of Linear Expansion	ASTM E228	in/in.°F		
Average Value			33 x 10 ⁻⁶	
Color			Red	
CONDENCATION	THED MALE EFFICIENCY			

CONDENSATION

For optimum performance and longevity, insulation systems for low temperature applications must be designed to control condensation. One primary design strategy is to specify high insulation efficiency since if the surface temperature of the insulation system can be maintained above the dewpoint, condensation will not occur. Since a minimal amount of condensation may be acceptable (or unavoidable) in humid environments, a secondary design strategy is to also demand insulation with low water vapor transmission. In this regard, no other insulation alternative offers ISO-HT's combination of superior R-factor and low water vapor permeance of 1.7 perm-inch.

FEATURES AND BENEFITS

- Fabrication available to virtually any shape/size
- Variable bunstock sizing in 3 dimensions
- Environmentally friendly (Zero-ODP)
- Up to 1/32" cut tolerance on surfaces
- Easy to handle, shape in the field
- Excellent Moisture Resistance
- Superior insulating value • High flexural strength
- Dimensionally stable
- Chemically resistant
- Low life-cycle cost
- Light-weight

THERMAL EFFICIENCY

With its high thermal efficiency, ISO-HT can achieve the same insulating value with as little as half the thickness required by alternative insulating materials. Less insulation leads to thinner walls, more space, and fewer and tighter energy-losing seams - - further enhanced by the availability of larger pieces (for example, 24-foot lengths). Less insulation in mechanical applications also equates to reduced quantities of expensive vapor retarders, jackets, and mastics. The lighter weight of ISO-HT compared to cellular glass (roughly one-third) reduces structural support requirements.

LIMITATIONS AND DISCLAIMER OF WARRANTIES AND LIABIL-**ITIES**

Characteristics, properties, performance of materials, and application specifications herein described are based on data obtained under controlled conditions. Information is supplied on the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. Kingspan Insulation, LLC makes no implied warranties of any type, including without limitation, any warrant of merchantability or fitness for purpose. In no event will Kingspan Insulation, LLC be responsible for damages of any nature whatsoever resulting from the use of or reliance upon this information or the product to which the information refers. No agent, sales representative, or employee is empowered to change, alter, or amend this provision, unless approved in writing by an authorized officer of Kingspan Insulation, LLC.

(800) 433-5551 info@dyplast.com www.dyplast.com 12501 N.W. 38th Ave. Miami, FL 33054